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COMMENT 

Mean-field phase diagram of the spin-1 Ising ferromagnet in a 
Gaussian random crystal field 

C E I Carneiro, Vera B Henriques and S R Salinas 
Instituto de Fisica, Universidade de SBo Paulo, Caixa Postal 20516, 01498 SHo Paulo, 
SP. Brazil 

Abstract. We consider the mean-field version of a spin-1 Ising ferromagnet in a random 
crystal field described by a Gaussian probability distribution. Depending on the width of 
the Gaussian, we obtain a rich phase diagram, with critical and coexistence lines and some 
multicritical points. At low temperatures, our numerical results are supported by some 
analytic asymptotic expansions. We also calculate the ground state for a suitable two-valued 
delta-function distribution to compare with the results for the Gaussian case. 

We consider the mean-field version of a spin-1 Ising ferromagnet in a random crystal 
field, described by the Hamiltonian 

where J > 0, S, = il, 0, and Di are independent, identically distributed random vari- 
ables, given by a Gaussian probability distribution, 

Using a Gaussian identity and the law of large numbers, we write a general expression 
for a free-energy functional, from which it is possible to investigate all the details of 
the D /  J - k ,  T /  J phase diagram for different values of the width parameter u = uo/ J. 
At low temperatures, the numerical calculations are supplemented by the results of 
some analytic asymptotic expansions. 

It is well known that the spin-1 king ferromagnet in a uniform crystal field displays 
a tricritical point separating lines of first- and second-order phase transitions in the 
D- T plane [ 11. As shown by calculations using delta-function distributions [2-41, 
randomness in the crystal field introduces several new features in the mean-field phase 
diagrams of this model. For example, Benyoussef e? a1 [ 2 ] ,  and the present authors 
[3], considered a random crystal field given by the distribution 

P ( D , ) = p S ( D , - D ) + ( l - p ) 6 ( D , ) .  (3) 
In the D- T phase diagram, there is still a tricritical point for p < 1, which turns into 
a pair of critical and double critical end-points as p decreases, and finally disappears 
for p < $. In fact, we have shown that, for any dilution, two distinct ferromagnetic 
phases are present at sufficiently low temperatures, the system remaining ordered for 
arbitrarily large values of D. Another form of delta-function distribution, including a 
mixture of two crystal fields, has also been studied by Boccara er a1 [4]. 

0305-4470/90/ 143383 +06S03.50 1990 IOP Publishing Ltd 3383 



3384 C E I Carneiro, V B Henriques and S R Salinas 

Using a Gaussian identity, the partition function associated with the mean-field 
Hamiltonian (1) is given by 

Z = (F) + exp{ - NPg ( T, { 0, }; m } d m 
--x 

1 ,v 

NP ! = I  
g(T ,  {D,} ;  m )  =iJm'-- ln(2 cosh(pJm)+ 1). 

(4) 

In the thermodynamic limit, we can use the law of large numbers to write the free-energy 
functional 

( 6 )  
7 1  

P 
g( T, { D , } ;  m )  =iJm---  E(ln(2 e-PD, cosh(pJm)+ 1)) 

where the expectation value E { .  . .} is taken with respect to some arbitrary probability 
distribution P( D,) .  In the case of the Gaussian distribution, given by (2), the functional 
g depends on the temperature T, the parameters D and w,, of the probability distribution, 
and the variable m associated with the magnetisation per spin. The extrema of the 
functional yield the equation of state, 

m = sinh( y )  E { [ cosh( :) +: exp( :)]-I} 

where we use the notation t = ( P J ) - '  and d, = D , / J .  It should be remarked that 
expressions for the free energy and the magnetisation obtained for distinct particular 
distributions in previous publications can all be deduced from these general expressions. 
Conditions for the location of the critical line and the tricritical point can also be 
written in a general form from an expansion of the free-energy functional in powers 
of m [ 5 ] .  We thus have 

(8) 
1 
- g( m ) = g, + A m  + Bm' + Cm + . . . 
J 

where 

A = 2 t  -I E {  [ 2 + exp( :)I-'} 
and 

(9) 

The critical line is given by A = 0, with B > 0. The tricritical point is given by A = B = 0, 
with C>O. 

In the particular case of the Gaussian distribution, given by (21, the free-energy 
functional, g ( m ) ,  may be written as 

- 1 g ( m )  = i m 2  - w ( 2 T ) , , 2  t 1-y exp( -9) In(2exp( -:) cosh(:) + I )  dx (11) J 

where d = D/J, and w = u,/J. The equation of state is given by 

exp[-(x-d)2/2w'] m =  
sinh(:) I" - x  cosh( m /  t )  +; exp(x/r)  dx. U( 27r ) ' !?  
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At the ground state, for T = 0, ( 1 2 )  may be written as 

where erf(x) is the standard error function. If we rewrite this expression in the form 

erf(x) = 2&ax - 2 (  d - 4) (14) 

where x = ( m  - d ) / ( & ) ,  it is easy to see that there may be three distinct solutions 
for small enough values of U. We then use (1 1) and (13) to write the limiting form of 
the free energy 

1 cr ( m - d ) ’  - g( m) = m ( d  - 4 m )  -- 
J ( 2 ? T ) ” 2  

and choose the solution m associated with the absolute minimum of g.  As in the case 
of the delta-function distributions, we have the possibility of a transition between two 
ferromagnetic phases. For ~ > ( 2 7 1 ) - ” ~ ,  as ( 1 4 )  displays a unique solution for any 
value of d, a single ferromagnetic phase will be present in the d - t  phase diagram. For 
U < ( 2 ? ~ ) - ” > ,  however, two distinct ferromagnetic phases coexist at  t = 0 and  d = 0.5. 

At low temperatures ( t  + 0), the form of the integrals in (1 1) and (12) is particularly 
suitable for a straightforward application of the well known Sommerfeld asymptotic 
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Figure 1 .  A typical d - t  phase diagram for U < 0.202. . . (with numerical results for U = 0.1). 
Full curves are second-order boundaries. Broken curves are coexistence curves. The inset 
shows a critical end-point ( C E )  and the coexistence line of two distinct ferromagnetic phases. 
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Figure 2. A typical d-r  phase diagram for 0.202. . . < (T < 0 .229 . .  . (with numerical results 
for (T = 0.22). The inset shows a critical end point ( C E )  and a double critical end point DCE) .  

expansion technique [ 6 ] .  The expression of the critical line, given by A = 0, from (8)  
and  (9) ,  with a Gaussian expectation value, can be written in the asymptotic form 

t =I { 1 -er( ') +- 1 exp( -") 
2 ua 6 2 u 2  

x (In 2 f + ( (In 2 2 + $) (:) ' + . . . I) [ u 2 u  
( 1 6 )  

which shows that d + x for t + 0. The asymptotic forms of the magnetisation and the 
free-energy functional are respectively given by 

m = -  1+erf  - 
2 ' [  (:;)I+ 6 a u  

7r3 ' ( d  - m )  ( m - d ) '  

( 1 7 ~ )  
and 
1 m - d  u 
J 
- g ( m ) = i m 2 - { ( m - d )  

These asymptotic forms are particularly useful to check the numerical results at low 
temperatures, where precise calculations become hard to perform. 
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Figure 3. A typical d - r  phase diagram for 0.229.  , . < (r < ( 2 7 7 - ’ ”  (with numerical results 
for v = 0.3). The broken curve represents the coexistence between two distinct ferromag- 
netic phases. 

To obtain the global phase diagrams, the Gaussian integrations were performed 
numerically. Figures 1-3 display typical phase diagrams, depending on the ratio, a, 
between the width of the Gaussian distribution, uo, and the exchange parameter, J. 

(i)  For a = u , / J  < 0.202 . . . , the tricritical point of the pure system is still present, 
but there are two ferromagnetic phases at low temperatures (figure 1). 

(ii) For 0.202. . . < a < 0.229. . . , the tricritical point disappears, giving rise to a 
critical and a double critical end-point (figure 2). 

(iii) For 0.229 . . . < a s ( 2 ~ ) - ” ~ ,  the para-ferromagnetic transition becomes second 
order at all temperatures, but the two ferromagnetic phases are still present at low 
temperatures (figure 3). As naive numerical integrations may lead to large distortions 
at low temperatures, the asymptotic expansions become extremely useful to obtain the 
line of first-order transitions in this figure. 

(iv) Finally, for U > ( 2 ~ ) - ” ~ ,  there exists a single ferromagnetic phase which 
remains stable up to arbitrarily large values of d. 

It is interesting to consider a new delta-function distribution, given by 

p (  D, ) = fa[ D, - ( D  + a,)] + $8 [ D, - ( D - a,)] (18) 

to compare with the results for the Gaussian distribution of (2).  At T = 0 ,  this new 
distribution yields the following results. 

(i) For a 6 0.25, a fully ordered phase ( M = 1) coexists with the paramagnetic phase 
at d =0.5. 
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(ii) For 0.25 < cr<O.75, two ferromagnetic phases ( m  = 1 and m =;) coexist at 
d = 0.75 - cr, and the system becomes paramagnetic for d 2 0.25 + cr. 

(iii) For cr 3 0.75, a ferromagnetic phase ( m  = i) coexists with a paramagnetic phase 
at d = 0.25 + cr. In this case it is not difficult to explain the existence of two ferromagnetic 
phases. Half of the system, with crystalline field D + cro, disorders before the other 
half, with a smaller crystalline field, D - go. For sufficiently large go, one half of the 
system is disordered even at D=O, and therefore a single ferromagnetic phase is 
present. It is interesting that these features also appear in the case of the Gaussian 
distribution. On the other hand, for the Gaussian distribution, the stability of the 
ordered phase up to arbitrarily large values of D is to be expected due to the tail of 
the Gaussian curve for negative values of D,, which guarantees that part of the system 
remains ordered for any D. 

In conclusion, the spin-1 Ising ferromagnet in a Gaussian random crystal field 
displays a rich phase diagram, with new phases, critical and coexistence lines and 
some multicritical points. It remains to be checked whether these features are not 
artifacts of a mean-field calculation. 
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